Jupyter AI v3 marks a major step forward in integrating intelligent coding assistance directly into JupyterLab. Discussed by AWS engineers David Qiu and Piyush Jain at JupyterCon, the new release introduces AI personas — customizable, specialized assistants that users can configure to perform tasks such as coding help, debugging, or analysis. Unlike other AI tools, Jupyter AI allows multiple named agents, such as “Claude Code” or “OpenAI Codex,” to coexist in one chat.
Jupyter AI v3 marks a major step forward in integrating intelligent coding assistance directly into JupyterLab. Discussed by AWS engineers David Qiu and Piyush Jain at JupyterCon, the new release introduces AI personas— customizable, specialized assistants that users can configure to perform tasks such as coding help, debugging, or analysis. Unlike other AI tools, Jupyter AI allows multiple named agents, such as “Claude Code” or “OpenAI Codex,” to coexist in one chat.
Developers can even build and share their own personas as local or pip-installable packages. This flexibility was enabled by splitting Jupyter AI’s previously large, complex codebase into smaller, modular packages, allowing users to install or replace components as needed. Looking ahead, Qiu envisions Jupyter AI as an “ecosystem of AI personas,” enabling multi-agent collaboration where different personas handle roles like data science, engineering, and testing. With contributors from AWS, Apple, Quansight, and others, the project is poised to expand into a diverse, community-driven AI ecosystem.
Learn more from The New Stack about the latest in Jupyter AI development:
Introduction to Jupyter Notebooks for Developers
Display AI-Generated Images in a Jupyter Notebook
Join our community of newsletter subscribers to stay on top of the news and at the top of your game.