The New Stack Podcast

Do All Your AI Workloads Actually Require Expensive GPUs?

Episode Summary

GPUs dominate today’s AI landscape, but Google argues they are not necessary for every workload. As AI adoption has grown, customers have increasingly demanded compute options that deliver high performance with lower cost and power consumption. Drawing on its long history of custom silicon, Google introduced Axion CPUs in 2024 to meet needs for massive scale, flexibility, and general-purpose computing alongside AI workloads. The Axion-based C4A instance is generally available, while the newer N4A virtual machines promise up to 2x price performance.

Episode Notes

GPUs dominate today’s AI landscape, but Google argues they are not necessary for every workload. As AI adoption has grown, customers have increasingly demanded compute options that deliver high performance with lower cost and power consumption. Drawing on its long history of custom silicon, Google introduced Axion CPUs in 2024 to meet needs for massive scale, flexibility, and general-purpose computing alongside AI workloads. The Axion-based C4A instance is generally available, while the newer N4A virtual machines promise up to 2x price performance.

In this episode, Andrei Gueletii, a technical solutions consultant for Google Cloud joined Gari Singh, a product manager for Google Kubernetes Engine (GKE), and Pranay Bakre, a principal solutions engineer at Arm for this episode, recorded at KubeCon + CloudNativeCon North America, in Atlanta. Built on Arm Neoverse V2 cores, Axion processors emphasize energy efficiency and customization, including flexible machine shapes that let users tailor memory and CPU resources. These features are particularly valuable for platform engineering teams, which must optimize centralized infrastructure for cost, FinOps goals, and price performance as they scale.

Importantly, many AI tasks—such as inference for smaller models or batch-oriented jobs—do not require GPUs. CPUs can be more efficient when GPU memory is underutilized or latency demands are low. By decoupling workloads and choosing the right compute for each task, organizations can significantly reduce AI compute costs.

Learn more from The New Stack about the Axion-based C4A: 

Beyond Speed: Why Your Next App Must Be Multi-Architecture

Arm: See a Demo About Migrating a x86-Based App to ARM64

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.